package ij.plugin;
import ij.*;
import ij.gui.*;
import ij.process.*;
import ij.measure.Calibration;
import ij.macro.Interpreter;
import java.awt.*;
import java.awt.image.*;

/**
This plugin creates a sequence of projections of a rotating volume (stack of slices) onto a plane using
nearest-point (surface), brightest-point, or mean-value projection or a weighted combination of nearest-
point projection with either of the other two methods (partial opacity).  The user may choose to rotate the
volume about any of the three orthogonal axes (x, y, or z), make portions of the volume transparent (using
thresholding), or add a greater degree of visual realism by employing depth cues. Based on Pascal code
contributed by Michael Castle of the  University of Michigan Mental Health Research Institute.
*/ 

public class Projector implements PlugIn {

    private static final int xAxis=0, yAxis=1, zAxis=2;
    private static final int nearestPoint=0, brightestPoint=1, meanValue=2;
    private static final int BIGPOWEROF2 = 8192;
    private static final String[] axisList = {"X-Axis", "Y-Axis", "Z-Axis"};
    private static final String[] methodList = {"Nearest Point", "Brightest Point", "Mean Value"};
    
    private static int axisOfRotationS = yAxis;
    private static int projectionMethodS = brightestPoint;
    private static int initAngleS = 0;
    private static int totalAngleS = 360;
    private static int angleIncS = 10;
    private static int opacityS = 0;
    private static int depthCueSurfS = 0;
    private static int depthCueIntS = 50;
    private static boolean interpolateS;
    private static boolean allTimePointsS;

    private int axisOfRotation = axisOfRotationS;
    private int projectionMethod = projectionMethodS;
    private int initAngle = initAngleS;
    private int totalAngle = totalAngleS;
    private int angleInc = angleIncS;
    private int opacity = opacityS;
    private int depthCueSurf = depthCueSurfS;
    private int depthCueInt = depthCueIntS;
    private boolean interpolate = interpolateS;
    private boolean allTimePoints = allTimePointsS;
    
    private boolean debugMode;
    private double sliceInterval = 1.0; // pixels
    private int transparencyLower = 1;
    private int transparencyUpper = 255;    
    private ImagePlus imp;
    private ImageStack stack;
    private ImageStack stack2;
    private int width, height, imageWidth;
    private int left, right, top, bottom;
    private byte[] projArray, opaArray, brightCueArray;
    private short[] zBuffer, cueZBuffer, countBuffer;
    private int[] sumBuffer;
    private boolean isRGB;
    private String label = "";
    private boolean done;
    private boolean batchMode = Interpreter.isBatchMode();
    private double progressBase=0.0, progressScale=1.0;
    private boolean showMicroProgress = true;

    public void run(String arg) {
        imp = IJ.getImage();
        ImageProcessor ip = imp.getProcessor();
        if (ip.isInvertedLut() && !IJ.isMacro()) {
            if (!IJ.showMessageWithCancel("3D Project", ZProjector.lutMessage))
                return;
        }
        if (!showDialog())
            return;
        if (sliceInterval>100) {
            IJ.error("Z spacing ("+(int)sliceInterval+") is too large.");
            return;
        }
        imp.startTiming();
        isRGB = imp.getType()==ImagePlus.COLOR_RGB;
        if (imp.isHyperStack()) {
            if (imp.getNSlices()>1)
                doHyperstackProjections(imp);
            else
                IJ.error("Hyperstack Z dimension must be greater than 1");
            return;
        }
        if (interpolate && sliceInterval>1.0) {
            imp = zScale(imp, true);
            if (imp==null) return;
            sliceInterval = 1.0;
        }
        if (isRGB)
            doRGBProjections(imp);
        else {
            ImagePlus imp2 = doProjections(imp);
            if (imp2!=null)
                imp2.show();
        }
    }

    private boolean showDialog() {
        ImageProcessor ip = imp.getProcessor();
        double lower = ip.getMinThreshold();
        if (lower!=ImageProcessor.NO_THRESHOLD) {
            transparencyLower = (int)lower;
            transparencyUpper = (int)ip.getMaxThreshold();
        }
        Calibration cal = imp.getCalibration();
        boolean hyperstack = imp.isHyperStack() && imp.getNFrames()>1;
        GenericDialog gd = new GenericDialog("3D Projection");
        gd.addChoice("Projection method:", methodList, methodList[projectionMethod]);
        gd.addChoice("Axis of rotation:", axisList, axisList[axisOfRotation]);
        //gd.addMessage("");
        gd.addNumericField("Slice spacing ("+cal.getUnits()+"):",cal.pixelDepth,2); 

        gd.addNumericField("Initial angle (0-359 degrees):", initAngle, 0);
        gd.addNumericField("Total rotation (0-359 degrees):", totalAngle, 0);
        gd.addNumericField("Rotation angle increment:", angleInc, 0);
        gd.addNumericField("Lower transparency bound:", transparencyLower, 0);
        gd.addNumericField("Upper transparency bound:", transparencyUpper, 0);
        gd.addNumericField("Opacity (0-100%):", opacity, 0);
        gd.addNumericField("Surface depth-cueing (0-100%):", 100-depthCueSurf, 0);
        gd.addNumericField("Interior depth-cueing (0-100%):", 100-depthCueInt, 0);
        gd.addCheckbox("Interpolate", interpolate);
        if (hyperstack)
            gd.addCheckbox("All time points", allTimePoints);
        //gd.addCheckbox("Debug Mode:", debugMode);

        gd.addHelp(IJ.URL+"/docs/menus/image.html#project");
        gd.showDialog();
        if (gd.wasCanceled())
            return false;;
        projectionMethod = gd.getNextChoiceIndex();
        axisOfRotation = gd.getNextChoiceIndex();
        cal.pixelDepth = gd.getNextNumber();
        if (cal.pixelWidth==0.0) cal.pixelWidth = 1.0;
        sliceInterval = cal.pixelDepth/cal.pixelWidth;
        initAngle =  (int)gd.getNextNumber();
        totalAngle =  (int)gd.getNextNumber();
        angleInc =  (int)gd.getNextNumber();
        transparencyLower =  (int)gd.getNextNumber();
        transparencyUpper =  (int)gd.getNextNumber();
        opacity =  (int)gd.getNextNumber();
        depthCueSurf =  100-(int)gd.getNextNumber();
        depthCueInt =  100-(int)gd.getNextNumber();
        interpolate =  gd.getNextBoolean();
        if (hyperstack)
            allTimePoints =  gd.getNextBoolean();
        //debugMode =  gd.getNextBoolean();
        axisOfRotationS = axisOfRotation;
        projectionMethodS = projectionMethod;
        initAngleS = initAngle;
        totalAngleS = totalAngle;
        angleIncS = angleInc;
        opacityS = opacity;
        depthCueSurfS = depthCueSurf;
        depthCueIntS = depthCueInt;
        interpolateS = interpolate;
        allTimePointsS = allTimePoints;
        return true;
    }
        
    private void doHyperstackProjections(ImagePlus imp) {
        double originalSliceInterval = sliceInterval;
        ImagePlus buildImp = null;
        ImagePlus projImpD = null;
        int finalChannels = imp.getNChannels();
        int finalSlices = imp.getNSlices();
        int finalFrames = imp.getNFrames();
        int f1 = 0;
        int f2 = imp.getNFrames()-1;
        if (imp.getBitDepth()==24)
            allTimePoints = false;
        if (!allTimePoints)
            f1 = f2 = imp.getFrame();
        
        int channels =  imp.getNChannels();
        progressScale = 1.0/channels;
        if (allTimePoints)
            showMicroProgress = false;
        int count = 1;
        for (int c=0; c<channels; c++) {
            for (int f=f1; f<=f2; f++) {
                if (allTimePoints)
                    IJ.showProgress(count++, channels*imp.getNFrames());
                sliceInterval = originalSliceInterval;
                ImagePlus impD = (new Duplicator()).run(imp, c+1, c+1, 1, imp.getNSlices(), f+1, f+1);
                impD.setCalibration(imp.getCalibration());
                if (interpolate && sliceInterval>1.0) {
                    impD = zScale(impD, false);
                    if (impD==null) return;
                    sliceInterval = 1.0;
                }
                if (isRGB)
                    doRGBProjections(impD);
                else {
                    progressBase = (double)c/channels;
                    projImpD = doProjections(impD);
                    if (projImpD==null) return;
                    finalSlices = projImpD.getNSlices();
                    impD.close();
                    if ((f==0||!allTimePoints)&& c==0)  {
                        buildImp = projImpD;
                        buildImp.setTitle("BuildStack");
                    } else {
                        Concatenator concat = new Concatenator();
                        buildImp =  concat.concatenate(buildImp, projImpD, false);
                    }
                }
                if (done) return;
            }
        }
        if (imp.getNFrames()==1 || !allTimePoints) {
            finalFrames = finalSlices;
            finalSlices = 1;
        }
        if (imp.getNChannels()>1)
            buildImp = HyperStackConverter.toHyperStack(buildImp, finalChannels, finalSlices, finalFrames, "xyztc", "composite");
        if (imp.isComposite()) {
            CompositeImage buildImp2 = new CompositeImage(buildImp, 0);
            ((CompositeImage)buildImp2).copyLuts(imp);
            ((CompositeImage)buildImp2).resetDisplayRanges();
            buildImp = buildImp2;
        }
        buildImp.setTitle("Projections of "+imp.getShortTitle());
        buildImp.show();
    }

    private  void doRGBProjections(ImagePlus imp) {
        boolean saveUseInvertingLut = Prefs.useInvertingLut;
        Prefs.useInvertingLut = false;
        ImageStack[] channels = ChannelSplitter.splitRGB(imp.getStack(), true);
        ImagePlus red = new ImagePlus("Red", channels[0]);
        ImagePlus green = new ImagePlus("Green", channels[1]);
        ImagePlus blue = new ImagePlus("Blue", channels[2]);
        Calibration cal = imp.getCalibration();
        Roi roi = imp.getRoi();
        if (roi!=null)
            {red.setRoi(roi); green.setRoi(roi); blue.setRoi(roi);}
        red.setCalibration(cal); green.setCalibration(cal); blue.setCalibration(cal);
        label = "Red: ";
        progressBase = 0.0;
        progressScale = 1.0/3.0;
        red = doProjections(red);
        if (red==null || done) return;
        label = "Green: ";
        progressBase = 1.0/3.0;
        green = doProjections(green);
        if (green==null || done) return;
        label = "Blue: ";
        progressBase = 2.0/3.0;
        blue = doProjections(blue);
        if (blue==null || done) return;
        int w = red.getWidth(), h = red.getHeight(), d = red.getStackSize();
        RGBStackMerge merge = new RGBStackMerge();
        ImageStack stack = merge.mergeStacks(w, h, d, red.getStack(), green.getStack(), blue.getStack(), true);
        new ImagePlus("Projection of  "+imp.getShortTitle(), stack).show();
        Prefs.useInvertingLut = saveUseInvertingLut;
    }

    private  ImagePlus doProjections(ImagePlus imp) {
        int nSlices;                // number of slices in volume
        int projwidth, projheight;  //dimensions of projection image
        int xcenter, ycenter, zcenter;  //coordinates of center of volume of rotation
        int theta;              //current angle of rotation in degrees
        double thetarad;            //current angle of rotation in radians
        int sintheta, costheta;     //sine and cosine of current angle
        int offset;
        int curval, prevval, nextval, aboveval, belowval;
        int n, nProjections, angle;
        boolean minProjSize = true;
        
        stack = imp.getStack();
        if (imp.getBitDepth()==16 || imp.getBitDepth()==32) {
            ImageStack stack2 = new ImageStack(imp.getWidth(),imp.getHeight());
            for (int i=1; i<=stack.size(); i++)
                stack2.addSlice(stack.getProcessor(i).convertToByte(true));
            stack = stack2;
        }
        if ((angleInc==0) && (totalAngle!=0))
            angleInc = 5;
        boolean negInc = angleInc<0;
        if (negInc) angleInc = -angleInc;
        angle = 0;
        nProjections = 0;
        if (angleInc==0)
            nProjections = 1;
        else {
            while (angle<=totalAngle) {
                nProjections++;
                angle += angleInc;
            }
        }
        if (angle>360)
            nProjections--;
        if (nProjections<=0)
            nProjections = 1;
        if (negInc) angleInc = -angleInc;

        ImageProcessor ip = imp.getProcessor();
        Rectangle r = ip.getRoi();
        left = r.x;
        top = r.y;
        right = r.x + r.width;
        bottom = r.y + r.height;
        nSlices = imp.getStackSize();
        imageWidth = imp.getWidth();
        width = right - left;
        height = bottom - top;
        xcenter = (left + right)/2;          //find center of volume of rotation
        ycenter = (top + bottom)/2;
        zcenter = (int)(nSlices*sliceInterval/2.0+0.5);

        projwidth = 0;
        projheight = 0;
        if (minProjSize && axisOfRotation!=zAxis) {
            switch (axisOfRotation) {
                case xAxis:
                    projheight = (int)(Math.sqrt(nSlices*sliceInterval*nSlices*sliceInterval+height*height) + 0.5);
                    projwidth = width;
                    break;
                case yAxis:
                    projwidth = (int)(Math.sqrt(nSlices*sliceInterval*nSlices*sliceInterval+width*width) + 0.5);
                    projheight = height;
                    break;
            }
        } else {
            projwidth = (int) (Math.sqrt (nSlices*sliceInterval*nSlices*sliceInterval+width*width) + 0.5);
            projheight = (int) (Math.sqrt (nSlices*sliceInterval*nSlices*sliceInterval+height*height) + 0.5);
        }
        if ((projwidth%2)==1)
            projwidth++;
        int projsize = projwidth * projheight;      
        if (projwidth<=0 || projheight<=0) {
            IJ.error("'projwidth' or 'projheight' <= 0");
            return null;
        }
        try {
            allocateArrays(nProjections, projwidth, projheight);
        }  catch(OutOfMemoryError e) {
            Object[] images = stack2.getImageArray();
            if (images!=null)
                for (int i=0; i<images.length; i++) images[i]=null;
            stack2 = null;
            IJ.error("Projector - Out of Memory",
                "To use less memory, use a rectanguar\n"
                +"selection,  reduce \"Total Rotation\",\n"
                +"and/or increase \"Angle Increment\"."
                );
            return null;
        }
        ImagePlus projections = new ImagePlus("Projections of "+imp.getShortTitle(), stack2);
        projections.setCalibration(imp.getCalibration());
        //projections.show();
        
        IJ.resetEscape();
        theta = initAngle;
        IJ.resetEscape();
        for (n=0; n<nProjections; n++) {
            IJ.showStatus(n+"/"+nProjections);
            showProgress((double)n/nProjections);
            thetarad = theta * Math.PI/180.0;
            costheta = (int)(BIGPOWEROF2*Math.cos(thetarad) + 0.5);
            sintheta = (int)(BIGPOWEROF2*Math.sin(thetarad) + 0.5);
            
            projArray = (byte[])stack2.getPixels(n+1);
            if (projArray==null)
                break;
            if ((projectionMethod==nearestPoint) || (opacity>0)) {
                for (int i=0; i<projsize; i++)
                    zBuffer[i] = (short)32767;
            }
            if ((opacity>0) && (projectionMethod!=nearestPoint)) {
                for (int i=0; i<projsize; i++)
                    opaArray[i] = (byte)0;
            }
            if ((projectionMethod==brightestPoint) && (depthCueInt<100)) {
                for (int i=0; i<projsize; i++)
                    brightCueArray[i] = (byte)0;
                for (int i=0; i<projsize; i++)
                    cueZBuffer[i] = (short)0;
            }
            if (projectionMethod==meanValue) {
                for (int i=0; i<projsize; i++)
                    sumBuffer[i] = 0;
                for (int i=0; i<projsize; i++)
                    countBuffer[i] = (short)0;
            }
            switch (axisOfRotation) {
                case xAxis:
                    doOneProjectionX (nSlices, ycenter, zcenter,projwidth, projheight, costheta, sintheta);
                    break;
                case yAxis:
                    doOneProjectionY (nSlices, xcenter, zcenter,projwidth, projheight, costheta, sintheta);
                    break;
                case zAxis:
                    doOneProjectionZ (nSlices, xcenter, ycenter, zcenter, projwidth, projheight, costheta, sintheta);
                    break;
            }
            
            if (projectionMethod==meanValue) {
                int count;
                for (int i=0; i<projsize; i++) {
                    count = countBuffer[i];
                    if (count!=0)
                        projArray[i] = (byte)(sumBuffer[i]/count);
                }
            }
            if ((opacity>0) && (projectionMethod!=nearestPoint)) {
                for (int i=0; i<projsize; i++)
                    projArray[i] = (byte)((opacity*(opaArray[i]&0xff) + (100-opacity)*(projArray[i] &0xff))/100);
            }
            if (axisOfRotation==zAxis) {
                for (int i=projwidth; i<(projsize-projwidth); i++) {
                    curval = projArray[i]&0xff;
                    prevval = projArray[i-1]&0xff;
                    nextval = projArray[i+1]&0xff;
                    aboveval = projArray[i-projwidth]&0xff;
                    belowval = projArray[i+projwidth]&0xff;
                    if ((curval==0)&&(prevval!=0)&&(nextval!=0)&&(aboveval!=0)&&(belowval!=0))
                        projArray[i] = (byte)((prevval+nextval+aboveval+belowval)/4);
                }
            }

            theta = (theta + angleInc)%360;
            //if (projections.getWindow()==null && IJ.getInstance()!=null && !batchMode)   // is "Projections" window still open?
            //  {done=true; break;}
            if (IJ.escapePressed()) {
                done=true;
                IJ.beep();
                IJ.showProgress(1.0);
                IJ.showStatus("aborted");
                break;
            }
            projections.setSlice(n+1);
        } //end for all projections
        showProgress(1.0);
 
        if (debugMode) {
            if (projArray!=null) new ImagePlus("projArray", new ByteProcessor(projwidth, projheight, projArray, null)).show();
            if (opaArray!=null) new ImagePlus("opaArray", new ByteProcessor(projwidth, projheight, opaArray, null)).show();
            if (brightCueArray!=null) new ImagePlus("brightCueArray", new ByteProcessor(projwidth, projheight, brightCueArray, null)).show();
            if (zBuffer!=null) new ImagePlus("zBuffer", new ShortProcessor(projwidth, projheight, zBuffer, null)).show();
            if (cueZBuffer!=null) new ImagePlus("cueZBuffer", new ShortProcessor(projwidth, projheight, cueZBuffer, null)).show();
            if (countBuffer!=null) new ImagePlus("countBuffer", new ShortProcessor(projwidth, projheight, countBuffer, null)).show();
            if (sumBuffer!=null) {
                float[] tmp = new float[projwidth*projheight];
                for (int i=0; i<projwidth*projheight; i++)
                    tmp[i] = sumBuffer[i];
                new ImagePlus("sumBuffer", new FloatProcessor(projwidth, projheight, tmp, null)).show();
            }
        }

        return projections;

    } // doProjection()
    
    
    private void allocateArrays(int nProjections, int projwidth, int projheight) {
        int projsize = projwidth*projheight;
        ColorModel cm = imp.getProcessor().getColorModel();
        if (isRGB) cm = null;
        stack2 = new ImageStack(projwidth, projheight, cm);
        projArray = new byte[projsize];
        for (int i=0; i<nProjections; i++)
            stack2.addSlice(null, new byte[projsize]);
        if ((projectionMethod==nearestPoint) || (opacity > 0))
            zBuffer = new short[projsize];      
        if ((opacity>0) && (projectionMethod!=nearestPoint))
            opaArray = new byte[projsize];
        if ((projectionMethod==brightestPoint) && (depthCueInt<100)) {
            brightCueArray = new byte[projsize];
            cueZBuffer = new short[projsize];
        }
        if (projectionMethod==meanValue) {
            sumBuffer = new int[projsize];
            countBuffer = new short[projsize];
        }
    }
                

    /**
    This method projects each pixel of a volume (stack of slices) onto a plane as the volume rotates about the x-axis. Integer
    arithmetic, precomputation of values, and iterative addition rather than multiplication inside a loop are used extensively
    to make the code run efficiently. Projection parameters stored in global variables determine how the projection will be performed.
    This procedure returns various buffers which are actually used by DoProjections() to find the final projected image for the volume
    of slices at the current angle.
    */
    private void doOneProjectionX (int nSlices, int ycenter, int zcenter, int projwidth, int projheight, int costheta, int sintheta) {
        int     thispixel;          //current pixel to be projected
        int    offset, offsetinit;      //precomputed offsets into an image buffer
        int z;                  //z-coordinate of points in current slice before rotation
        int ynew, znew;         //y- and z-coordinates of current point after rotation
        int zmax, zmin;         //z-coordinates of first and last slices before rotation
        int zmaxminuszmintimes100;  //precomputed values to save time in loops
        int c100minusDepthCueInt, c100minusDepthCueSurf;
        boolean DepthCueIntLessThan100, DepthCueSurfLessThan100;
        boolean OpacityOrNearestPt, OpacityAndNotNearestPt;
        boolean MeanVal, BrightestPt;
        int ysintheta, ycostheta;
        int zsintheta, zcostheta, ysinthetainit, ycosthetainit;
        byte[] pixels;
        int projsize = projwidth * projheight;

        //find z-coordinates of first and last slices
        zmax = zcenter + projheight/2;  
        zmin = zcenter - projheight/2;
        zmaxminuszmintimes100 = 100 * (zmax-zmin);
        c100minusDepthCueInt = 100 - depthCueInt;
        c100minusDepthCueSurf = 100 - depthCueSurf;
        DepthCueIntLessThan100 = (depthCueInt < 100);
        DepthCueSurfLessThan100 = (depthCueSurf < 100);
        OpacityOrNearestPt = ((projectionMethod==nearestPoint) || (opacity>0));
        OpacityAndNotNearestPt = ((opacity>0) && (projectionMethod!=nearestPoint));
        MeanVal = (projectionMethod==meanValue);
        BrightestPt = (projectionMethod==brightestPoint);
        ycosthetainit = (top - ycenter - 1) * costheta;
        ysinthetainit = (top - ycenter - 1) * sintheta;
        offsetinit = ((projheight-bottom+top)/2) * projwidth + (projwidth - right + left)/2 - 1;

        for (int k=1; k<=nSlices; k++) {
            pixels = (byte[])stack.getPixels(k);
            z = (int)((k-1)*sliceInterval+0.5) - zcenter;
            zcostheta = z * costheta;
            zsintheta = z * sintheta;
            ycostheta = ycosthetainit;
            ysintheta = ysinthetainit;
        for (int j=top; j<bottom; j++) {
            ycostheta += costheta;  //rotate about x-axis and find new y,z
            ysintheta += sintheta;  //x-coordinates will not change
            ynew = (ycostheta - zsintheta)/BIGPOWEROF2 + ycenter - top;
            znew = (ysintheta + zcostheta)/BIGPOWEROF2 + zcenter;
            offset = offsetinit + ynew * projwidth;
            //GetLine (BoundRect.left, j, width, theLine, Info->PicBaseAddr);
            //read each pixel in current row and project it
            int lineIndex = j*imageWidth;
            for (int i=left; i<right; i++) {
                thispixel = pixels[lineIndex+i]&0xff;
                offset++;
                if ((offset>=projsize) || (offset<0))
                    offset = 0;
                if ((thispixel <= transparencyUpper) && (thispixel >= transparencyLower)) {
                    if (OpacityOrNearestPt) {
                        if (znew<zBuffer[offset]) {
                            zBuffer[offset] = (short)znew;
                            if (OpacityAndNotNearestPt) {
                                if (DepthCueSurfLessThan100)
                                    opaArray[offset] = (byte)(/*255 -*/ (depthCueSurf*(/*255-*/thispixel)/100 + 
                                         c100minusDepthCueSurf*(/*255-*/thispixel)*(zmax-znew)/zmaxminuszmintimes100));
                                else
                                    opaArray[offset] = (byte)thispixel;
                            } else {
                                //p = (BYTE *)(projaddr + offset);
                                if (DepthCueSurfLessThan100)
                                    projArray[offset] = (byte)(/*255 -*/ (depthCueSurf*(/*255-*/thispixel)/100 +
                                        c100minusDepthCueSurf*(/*255-*/thispixel)*(zmax-znew)/zmaxminuszmintimes100));
                                else
                                    projArray[offset]  = (byte)thispixel;
                            }
                        } // if znew<zBuffer[offset]
                    } //if OpacityOrNearestP
                        if (MeanVal) {
                            //sp = (long *)sumbufaddr;
                            sumBuffer[offset] += thispixel;
                            //cp = (short int *)countbufaddr;
                            countBuffer[offset]++;
                        } else
                            if (BrightestPt) {
                                if (DepthCueIntLessThan100) {
                                    if ((thispixel>(brightCueArray[offset]&0xff)) || (thispixel==(brightCueArray[offset]&0xff)) && (znew>cueZBuffer[offset])) {
                                        brightCueArray[offset] = (byte)thispixel;  //use z-buffer to ensure that if depth-cueing is on,
                                        cueZBuffer[offset] = (short)znew;       //the closer of two equally-bright points is displayed.
                                        projArray[offset] = (byte)((depthCueInt*thispixel/100 +
                                            c100minusDepthCueInt*thispixel*(zmax-znew)/zmaxminuszmintimes100));
                                    }
                            } else {
                                if (thispixel>(projArray[offset]&0xff))
                                    projArray[offset] = (byte)thispixel;
                            }
                        } // else BrightestPt
                    } // if thispixel in range
                } //for i (all pixels in row)
            } // for j (all rows of BoundRect)
        } // for k (all slices)
    } //  doOneProjectionX()
    

    /** Projects each pixel of a volume (stack of slices) onto a plane as the volume rotates about the y-axis. */
    private void  doOneProjectionY (int nSlices, int xcenter, int zcenter, int projwidth, int projheight, int costheta, int sintheta) {
        int thispixel;          //current pixel to be projected
        int offset, offsetinit;     //precomputed offsets into an image buffer
        int z;                  //z-coordinate of points in current slice before rotation
        int xnew, znew;         //y- and z-coordinates of current point after rotation
        int zmax, zmin;         //z-coordinates of first and last slices before rotation
        int zmaxminuszmintimes100; //precomputed values to save time in loops
        int c100minusDepthCueInt, c100minusDepthCueSurf;
        boolean DepthCueIntLessThan100, DepthCueSurfLessThan100;
        boolean OpacityOrNearestPt, OpacityAndNotNearestPt;
        boolean MeanVal, BrightestPt;
        int xsintheta, xcostheta;
        int zsintheta, zcostheta, xsinthetainit, xcosthetainit;
        byte[] pixels;
        int projsize = projwidth * projheight;

        //find z-coordinates of first and last slices
        zmax = zcenter + projwidth/2;  
        zmin = zcenter - projwidth/2;
        zmaxminuszmintimes100 = 100 * (zmax-zmin);
        c100minusDepthCueInt = 100 - depthCueInt;
        c100minusDepthCueSurf = 100 - depthCueSurf;
        DepthCueIntLessThan100 = (depthCueInt < 100);
        DepthCueSurfLessThan100 = (depthCueSurf < 100);
        OpacityOrNearestPt = ((projectionMethod==nearestPoint) || (opacity>0));
        OpacityAndNotNearestPt = ((opacity>0) && (projectionMethod!=nearestPoint));
        MeanVal = (projectionMethod==meanValue);
        BrightestPt = (projectionMethod==brightestPoint);
        xcosthetainit = (left - xcenter - 1) * costheta;
        xsinthetainit = (left - xcenter - 1) * sintheta;
        for (int k=1; k<=nSlices; k++) {
            pixels = (byte[])stack.getPixels(k);
            z = (int)((k-1)*sliceInterval+0.5) - zcenter;
            zcostheta = z * costheta;
            zsintheta = z * sintheta;
            offsetinit = ((projheight-bottom+top)/2) * projwidth +(projwidth - right + left)/2 - projwidth;
            for (int j=top; j<bottom; j++) {
                xcostheta = xcosthetainit;
                xsintheta = xsinthetainit;
                offsetinit += projwidth;
                int lineOffset = j*imageWidth;
                //read each pixel in current row and project it
                for (int i=left; i<right; i++) {
                    thispixel =pixels[lineOffset+i]&0xff;
                    xcostheta += costheta;  //rotate about x-axis and find new y,z
                    xsintheta += sintheta;  //x-coordinates will not change
                    if ((thispixel <= transparencyUpper) && (thispixel >= transparencyLower)) {
                        xnew = (xcostheta + zsintheta)/BIGPOWEROF2 + xcenter - left;
                        znew = (zcostheta - xsintheta)/BIGPOWEROF2 + zcenter;
                        offset = offsetinit + xnew;
                        if ((offset>=projsize) || (offset<0))
                            offset = 0;
                        if (OpacityOrNearestPt) {
                            if (znew<zBuffer[offset]) {
                                zBuffer[offset] = (short)znew;
                                if (OpacityAndNotNearestPt) {
                                    if (DepthCueSurfLessThan100)
                                        opaArray[offset] = (byte)((depthCueSurf*thispixel/100 + 
                                            c100minusDepthCueSurf*thispixel*(zmax-znew)/zmaxminuszmintimes100));
                                    else
                                        opaArray[offset] = (byte)thispixel;
                                } else {
                                    if (DepthCueSurfLessThan100)
                                        projArray[offset] = (byte)((depthCueSurf*thispixel/100 +
                                             c100minusDepthCueSurf*thispixel*(zmax-znew)/zmaxminuszmintimes100));
                                    else
                                        projArray[offset] = (byte)thispixel;
                                }
                            } // if (znew < zBuffer[offset])
                        } // if (OpacityOrNearestPt)
                        if (MeanVal) {
                            sumBuffer[offset] += thispixel;
                            countBuffer[offset]++;
                        } else if (BrightestPt) {
                            if (DepthCueIntLessThan100) {
                                if ((thispixel>(brightCueArray[offset]&0xff)) || (thispixel==(brightCueArray[offset]&0xff)) && (znew>cueZBuffer[offset])) {
                                    brightCueArray[offset] = (byte)thispixel;  //use z-buffer to ensure that if depth-cueing is on,
                                    cueZBuffer[offset] = (short)znew;       //the closer of two equally-bright points is displayed.
                                    projArray[offset] = (byte)((depthCueInt*thispixel/100 +
                                        c100minusDepthCueInt*thispixel*(zmax-znew)/zmaxminuszmintimes100));
                                }
                            } else {
                                if (thispixel > (projArray[offset]&0xff))
                                    projArray[offset] = (byte)thispixel;
                            }
                        } // if  BrightestPt
                    } //end if thispixel in range
                } // for i (all pixels in row)
            } // for j (all rows)
        } // for k (all slices)
    } // DoOneProjectionY()
    

    /** Projects each pixel of a volume (stack of slices) onto a plane as the volume rotates about the z-axis. */
    private void doOneProjectionZ (int nSlices, int xcenter, int ycenter, int zcenter, int projwidth, int projheight, int costheta, int sintheta) {
        int thispixel;        //current pixel to be projected
        int offset, offsetinit; //precomputed offsets into an image buffer
        int z;   //z-coordinate of points in current slice before rotation
        int xnew, ynew; //y- and z-coordinates of current point after rotation
        int zmax, zmin; //z-coordinates of first and last slices before rotation
        int zmaxminuszmintimes100; //precomputed values to save time in loops
        int c100minusDepthCueInt, c100minusDepthCueSurf;
        boolean DepthCueIntLessThan100, DepthCueSurfLessThan100;
        boolean OpacityOrNearestPt, OpacityAndNotNearestPt;
        boolean MeanVal, BrightestPt;
        int xsintheta, xcostheta, ysintheta, ycostheta;
        int xsinthetainit, xcosthetainit, ysinthetainit, ycosthetainit;
        byte[] pixels;
        int projsize = projwidth * projheight;

        //find z-coordinates of first and last slices
        //zmax = zcenter + projwidth/2;  
        //zmin = zcenter - projwidth/2;
        zmax = (int)((nSlices-1)*sliceInterval+0.5) - zcenter;
        zmin = -zcenter;

        zmaxminuszmintimes100 = 100 * (zmax-zmin);
        c100minusDepthCueInt = 100 - depthCueInt;
        c100minusDepthCueSurf = 100 - depthCueSurf;
        DepthCueIntLessThan100 = (depthCueInt < 100);
        DepthCueSurfLessThan100 = (depthCueSurf < 100);
        OpacityOrNearestPt = ((projectionMethod==nearestPoint) || (opacity>0));
        OpacityAndNotNearestPt = ((opacity>0) && (projectionMethod!=nearestPoint));
        MeanVal = (projectionMethod==meanValue);
        BrightestPt = (projectionMethod==brightestPoint);
        xcosthetainit = (left - xcenter - 1) * costheta;
        xsinthetainit = (left - xcenter - 1) * sintheta;
        ycosthetainit = (top - ycenter - 1) * costheta;
        ysinthetainit = (top - ycenter - 1) * sintheta;
        offsetinit = ((projheight-bottom+top)/2) * projwidth + (projwidth - right + left)/2 - 1;
        for (int k=1; k<=nSlices; k++) {
            pixels = (byte[])stack.getPixels(k);
            z = (int)((k-1)*sliceInterval+0.5) - zcenter;
            ycostheta = ycosthetainit;
            ysintheta = ysinthetainit;
            for (int j=top; j<bottom; j++) {
                ycostheta += costheta;
                ysintheta += sintheta;
                xcostheta = xcosthetainit;
                xsintheta = xsinthetainit;
                //GetLine (BoundRect.left, j, width, theLine, Info->PicBaseAddr);
                int lineIndex = j*imageWidth;
                //read each pixel in current row and project it
                for (int i=left; i<right; i++) {
                    thispixel = pixels[lineIndex+i]&0xff;
                    xcostheta += costheta;  //rotate about x-axis and find new y,z
                    xsintheta += sintheta;  //x-coordinates will not change
                    if ((thispixel <= transparencyUpper) && (thispixel >= transparencyLower)) {
                        xnew = (xcostheta - ysintheta)/BIGPOWEROF2 + xcenter - left;
                        ynew = (xsintheta + ycostheta)/BIGPOWEROF2 + ycenter - top;
                        offset = offsetinit + ynew * projwidth + xnew;
                        if ((offset>=projsize) || (offset<0))
                            offset = 0;
                        if (OpacityOrNearestPt) {
                            if (z<zBuffer[offset]) {
                                zBuffer[offset] = (short)z;
                                if (OpacityAndNotNearestPt) {
                                    if (DepthCueSurfLessThan100)
                                        opaArray[offset] = (byte)((depthCueSurf*(thispixel)/100 +  c100minusDepthCueSurf*(thispixel)*(zmax-z)/zmaxminuszmintimes100));
                                    else
                                        opaArray[offset] = (byte)thispixel;
                                } else {
                                    if (DepthCueSurfLessThan100) {
                                        int v = (depthCueSurf*thispixel/100 + c100minusDepthCueSurf*thispixel*(zmax-z)/zmaxminuszmintimes100);
                                        //f[offset] = z;
                                        projArray[offset] = (byte)v;
                                    } else
                                        projArray[offset] = (byte)thispixel;
                                }
                            } // if z<zBuffer[offset]
                        } // OpacityOrNearestPt
                        if (MeanVal) {
                            sumBuffer[offset] += thispixel;
                            countBuffer[offset]++;
                        } else if (BrightestPt) {
                            if (DepthCueIntLessThan100) {
                                if ((thispixel>(brightCueArray[offset]&0xff)) || (thispixel==(brightCueArray[offset]&0xff)) && (z>cueZBuffer[offset])) {
                                    brightCueArray[offset] = (byte)thispixel;  //use z-buffer to ensure that if depth-cueing is on,
                                    cueZBuffer[offset] = (short)z;       //the closer of two equally-bright points is displayed.
                                    projArray[offset] = (byte)((depthCueInt*(thispixel)/100 + c100minusDepthCueInt*(thispixel)*(zmax-z)/zmaxminuszmintimes100));
                                }
                            } else {
                                //p = (BYTE *)(projaddr + offset);
                                if (thispixel > (projArray[offset]&0xff))
                                    projArray[offset] = (byte)thispixel;
                            }
                        } // else BrightestPt
                    } //if thispixel in range
                } //for i (all pixels in row)
            } // for j (all rows of BoundRect)
        } // for k (all slices)
        //new ImagePlus("f", new FloatProcessor(projwidth,projheight,f,null)).show();
    } // end doOneProjectionZ()

    private ImagePlus zScale(ImagePlus imp, boolean showProgress) {
        if (imp.getBitDepth()==16 || imp.getBitDepth()==32)
            IJ.run(imp, "8-bit", "");
        IJ.showStatus("Z Scaling...");
        ImageStack stack1 = imp.getStack();
        int depth1 = stack1.getSize();
        ImagePlus imp2 = null;
        String title = imp.getTitle();
        ImageProcessor ip = imp.getProcessor();
        ColorModel cm = ip.getColorModel();
        int width1 = imp.getWidth();
        int height1 = imp.getHeight();
        Rectangle r = ip.getRoi();
        int width2 = r.width;
        int height2 = r.height;
        int depth2 = (int)(stack1.getSize()*sliceInterval+0.5);
        imp2 = NewImage.createImage(title, width2, height2, depth2, isRGB?24:8, NewImage.FILL_BLACK);
        if (imp2==null || depth2!=imp2.getStackSize()) return null;
        ImageStack stack2 = imp2.getStack();
        ImageProcessor xzPlane1 = ip.createProcessor(width2, depth1);
        xzPlane1.setInterpolate(true);
        ImageProcessor xzPlane2;        
        int[] line = new int[width2];
        for (int y=0; y<height2; y++) {
            for (int z=0; z<depth1; z++) {
                if (isRGB)
                    getRGBRow(stack1, r.x, r.y+y, z, width1, width2, line);
                else
                    getByteRow(stack1, r.x, r.y+y, z, width1, width2, line);
                xzPlane1.putRow(0, z, line, width2);
            }
            //if (y==r.y) new ImagePlus("xzPlane", xzPlane1).show();
            xzPlane1.setProgressBar(null);
            xzPlane2 = xzPlane1.resize(width2, depth2);
            for (int z=0; z<depth2; z++) {
                xzPlane2.getRow(0, z, line, width2);
                if (isRGB)
                    putRGBRow(stack2, y, z, width2, line);
                else
                    putByteRow(stack2, y, z, width2, line);
            }
            if (showProgress)
                IJ.showProgress(y, height2-1);
        }
        //imp2.show();
        //imp2.setCalibration(imp.getCalibration());
        ImageProcessor ip2 = imp2.getProcessor();
        ip2.setColorModel(cm);
        return imp2;
    }
    
    private void showProgress(double percent) {
        if (showMicroProgress && !done)
            IJ.showProgress(progressBase+percent*progressScale);
    }

    private void getByteRow(ImageStack stack, int x, int y, int z, int width1, int width2, int[] line) {
        byte[] pixels = (byte[])stack.getPixels(z+1);
        int j = x + y*width1;
        for (int i=0; i<width2; i++)
            line[i] = pixels[j++]&255;
    }

    private void putByteRow(ImageStack stack, int y, int z, int width, int[] line) {
        byte[] pixels = (byte[])stack.getPixels(z+1);
        int j = y*width;
        for (int i=0; i<width; i++)
            pixels[j++] = (byte)line[i];
    }

    private void getRGBRow(ImageStack stack, int x, int y, int z, int width1, int width2, int[] line) {
        int[] pixels = (int[])stack.getPixels(z+1);
        int j = x + y*width1;
        for (int i=0; i<width2; i++)
            line[i] = pixels[j++];
    }

    private void putRGBRow(ImageStack stack, int y, int z, int width, int[] line) {
        int[] pixels = (int[])stack.getPixels(z+1);
        int j = y*width;
        for (int i=0; i<width; i++)
            pixels[j++] = line[i];
    }

}