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from a father, mother, and newborn are
compared for evidence of genetic muta-
tion. The 2-D electrophoresis process
used in the comparison resolves the pro-
tein constituents of the human cellsinto a
visible image, each protein being seen as
a distinct spot whose position in the im-
age corresponds to the protein’s molec-
ular weight (y-axis) and its molecular
charge (x-axis).

In this study, supported by the Na-
tional Institutes of Health and headed by
noted geneticist James V. Neel of the
University of Michigan, thousands of
blood samples from family trios are ex-
amined for unusual protein variants in
the blood of the child. The variants could
be evidence of a parental germ cell muta-
tion, which many believe is an early in-
dicator of a genetically damaging radio-
active or carcenogic environment.

The study has brought together so-
phisticated biochemical and computer
image processing techniques, which are
being implemented on a device called the
cytocomputer. Developed by Stanley
Sternberg, whose article, ‘‘Biomedical
Image Processing,’’ appears in this issue,
the cytocomputer is a pipelined neigh-
borhood processor that successively pro-
cesses the gel data, ultimately separating
the gel into regions corresponding to a
single spot on the pattern.

In the first stage of cytocomputer pro-
cessing, background levels of the gel trios
are detected and subtracted using a pro-
cess based on mathematical morphology,
an image-algebraic approach. The gels are
then further processed to determine spot
boundaries, and the boundaries are fil-
tered smooth by a sequence of neighbor-
hood processing steps. Finally, the cyto-
computer searches for spots very close to
background levels using a gel matching
program. For more details on this process,
see Sternberg’s article on p. 22.
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The burden on image analysts in

medical fields has led to the automated

processing of pictorial data. Here, a

device called the cytocomputer searches

for genetic mutations.

Biomedical
Image
Processing

Stanley R. Sternberg, CytoSystems Corporation

A computer revolution has occurred not only in
technical fields but also in medicine, where vast amounts
of information must be processed quickly and accurate-
ly. Nowhere is the need for image processing techniques
more apparent than in clinical diagnosis or mass screen-
ing applications where data take the form of digital im-
ages. New high-resolution scanning techniques such as
computed tomography, nuclear magnetic resonance, po-
sitron emission tomography, and digital radiography
produce images containing immense amounts of relevant
information for medical analysis. But as these scanning
techniques become more vital to clinical diagnosis, the
work for specialists who must visually examine the resul-
tant images increases. In many cases, quantitative data in
the form of measurements and counts are needed to sup-
plement nonimage patient data, and the manual extrac-
tion of these data is a time-consuming and costly step in
an otherwise automated process. Furthermore, subtle
variants of shade and shape can be the earliest clues to a
diagnosis, placing the additional burden of complete
thoroughness on the examining specialist.

For the last five years, the University of Michigan and
the Environmental Research Institute of Michigan have
conducted a unique series of studies that involve the pro-
cessing of biomedical imagery on a highly parallel com-
puter specifically designed for image processing. System
designers have incorporated the requirements of extrac-
ting a verifiable answer from an image in a reasonable
time into an integrated approach to hardware and soft-
ware design. The system includes a parallel pipelined im-
age processor, called a cytocomputer, and a high-level
language specifically created for image processing,

0018-9162/83/0100-0022801.00 © 1983 IEEE

C-3PL, the cytocomputer parallel picture processing
language.

These studies have involved a great many people from
both the medical and engineering communities and have
highlighted the interdisciplinary aspects of biomedical
image processing. The methods have been tested in
anatomy, developmental biology, nuclear medicine, car-
diology, and transplant rejection. The general consensus
is that quantification by automated image analysis not
only increases diagnostic accuracy but also provides
significant data not obtainable from qualitative analysis
alone.

One study in particular, on which descriptions in this
article are based, involves a joint effort by the University
of Michigan’s human genetics and electrical and com-
puter engineering departments and is supported by a
grant from the National Cancer Institute. Basically,
automated image analysis is being applied via sophis-
ticated biochemical and computer techniques to derive
an accurate estimate of the mutation rate for the human
species.

Study overview

We are becoming increasingly concerned about human
exposure to environmental elements, particularly those
agents that may be carcinogens or mutagens. The long-
term effects of exposure to chemical poisons and low-
level radiation must first be quantitatively understood
before their ultimate costs can be taken into account in

COMPUTER

'.ng—,:;: ') B e

R Sy gt

el

-4




the political process of their control. As a step in quanti-
fying the impact of mutagenic agents on human popula-
tions, techniques are being developed to detect mutation
and to estimate the mutation rate in sample populations.

In the study of human mutation rate at the University
of Michigan, placental cord blood samples are collected
from newborns as are venous samples from their mothers
and fathers. Samples of lymphocytes, red blood cell
membranes, red blood cell contents, and blood plasma
are being subjected to 2-D gel electrophoresis. A muta-
tion is indicated when a variant of an identified protein
appears in a child that is not present in either parent. The
challenge is to develop that combination of specimens
and techniques that will yield the greatest amount of in-
formation about mutation per unit of effort.

For the last 36 years, geneticist J. V. Neel of the
University of Michigan School of Medicine has studied
germ cell mutations in radiation-exposed Japanese popu-
lations.!»2 Using biochemical methods to detect protein
variants at a cellular level, the approach was aimed at
detecting single amino acid substitutions in a child’s pro-
teins that have been caused by mutations of parent’s ova
or sperm germ cells. Recently, 2-D electrophoresis sys-
tems in which cellular proteins are automatically mapped
according to both their molecular weight and molecular
charge have been developed. The 2-D gel electrophoresis
system is sufficiently sensitive to detect protein charge
changes caused by single amino acid substitutions. The
significant advantage of the 2-D gel system over other
biochemical methods is that many proteins are treated in
parallel on a single gel, each protein a potential candidate
for mutation. By contrast, traditional methods of esti-
mating mutation rate have relied on the appearance of
congenital defects, stillbirths, and infant survival rates,
all of which severely limit the size of sample populations.

The method of separating proteins in two dimensions
on a polyacrilimide gel medium is due mainly to O’Far-
rell,> with substantial improvements to the method by
Anderson and Anderson.* First, the cellular material,
usually blood, is fractionated into different cell types by
centrifuging. Separation in the first gel dimension is by
isoelectric focusing in which the proteins are separated
on the basis of their molecular charge, or their isoelectric
point. Separation in the second dimension is done by
electrophoresis after the proteins have been treated by a
detergent that masks the proteins’ molecular charge and
permits electrophoresis to resolve proteins on the basis of
their molecular weights. At the end of the second step,
each protein has migrated to a position (x,y) on the 2-D
gel, where x reflects the molecular charge (pH) of the
protein and y reflects its molecular weight. To see the
proteins in the gel and perform qualitative and quan-
titative analysis, the proteins are either radioactively
labeled during their synthesis and detected by autoradi-
ography or stained at the end of electrophoresis. The in-
dividual proteins appear on the stained gel or autoradio-
gram as spots of different size and intensity. The in-
tegrated density of each spot is proportional to the
amount of a given protein in the sample. Figure 1 il-
lustrates a silver-stained 2-D electrophoretic gel.
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The cytocomputer: a biomedical image
processing tool

Development and use. In the University of Michigan
mutation rate study, my colleagues and I are seeking rare
events—only one mutation will occur in 100,000
samples— and thousands of mother, father, and child
gel trios must be examined spot by spot for variations in
protein patterns. This tedious task is clearly best suited to
computerized visual comparison rather than human vi-
sion alone. (For more on computer analysis of 2-D elec-
trophoretic gels in general, see Skolnick et al.5)

Searching for a rare protein mutation in a large num-
ber of gels requires that processing be very fast and that
operator interaction be required only if a mutation is
suspected. For this reason, we have directed efforts to the
implementation of highly automated gel processing on a
special-purpose computer characterized by a large
capacity for parallel processing. The cytocomputer,
which was developed at the Environmental Research In-
stitute of Michigan, runs programs that apply sequences
of neighborhood transformations to digitized gel images.
Cytocomputer image processing operations are based on
the concepts of cellular automata. Every cell or picture
element (pixel) of an image is subjected to an identical se-
quence of time-discrete transformations, the trans-
formed value of a pixel being determined by the values of
a finite group of cells that make up its ‘‘neighborhood.”’
Each neighborhood transformation is performed in an
individual cytocomputer processing element referred to
as a processing stage.

A cytocomputer is a serial pipeline of programmable
processing stages, in which each stage performs a single

Figure 1. Two-dimensional silver-stained electrophoretic
gel of red blood cell contents. The spots are individual
proteins, spatially separated according to their molecular
weight vertically and molecular charge horizontally.
Prepared by Barnett Rosenblum of the University of
Michigan.
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transformation of the processing sequence on an entire
image. Images are entered into a cytocomputer in a line-

. scanned format and progress through the pipeline of pro-
cessing stages at a real-time rate. Following an initial
delay to fill the pipeline, images can be processed at the
same rate they are scanned.

Digital images and cellular automata have a common
conceptual framework. Each pixel of a digital image can
be thought of as a cell in a given state. If we define a
neighborhood and a cell transition function on a digital
image, then we can apply the transition function to
modify or transform the configuration of cell states into
new configurations. Of critical importance then is
whether neighborhoods and transition functions exist
that will cause images to be transformed in a predictable
and useful manner when subjected to long sequences of
neighborhood operations.

The image processing language we are investigating
differs from conventional approaches in that the basic
manipulative unit is pictorial and operations deal with
images as wholes. Image processing is treated as a com-
putation involving images as variables in algebraic ex-
pressions. These expressions may combine several images
through both logical and geometrical relationships.

Architecture. Cytocomputer operations are imple-
mented in highly efficient cellular computer architec-
tures, and the computations are very fast. The Cyto I
cytocomputer executes 140 million neighborhood opera-
tions per second in an 88-stage pipeline. Image process-
ing algorithms are constructed as well-formed strings of
primitives that are either variables representing images or
image operations. The image being processed is referred
to as the active image. Other images referred to in an
image-algebraic expression are called structuring ele-
ments. In an image processing algorithm, we can modify
the active image by probing it with structuring elements
or combining it with other active images.

The neighborhood in a cellular space determines the
set of structuring elements that can be employed in a
single neighborhood transformation. Each pixel of a
digital image belongs to a window of pixels composed of
the given pixel and its neighbors. All structuring elements
used in a neighborhood transformation must be sub-
images of the window.

Consider a two-dimensional cellular array, where each
cell of the lattice has connections with a finite collection
of other cells that make up its input. The geometric pat-
tern of the cells input to a given cell is the same as the pat-
tern of the points in the neighborhood. Figure 2 illus-
trates a cellular array with the connection pattern for a
3x 3 window configuration. In Figure 3, each cell of the
array consists of a register for storing the state of the cell
and a transition module that computes the new value of
the cell state as a function of the states of the cells in the
window. When a common clock pulse is applied to each
cell in the array, all cell state registers pass from their
previous state to a new state as determined by the pro-
gramming of the transition logic module.

Although digitized biomedical image dimensions can
often exceed 1000 x 1000 pixels, the largest arrays yet
produced are only on the order of 100x 100. (See
Potter’s article on the MPP in this issue.) Large images
must be partitioned into image segments, and each seg-
ment processed in turn. However, segment border effects
propagate into the segment when multiple neighborhood
transformations are applied, necessitating extremely
costly and time-consuming I/0 hardware and software
subsystems for rapid segment swapping. The problem is
remedied in the pipeline architecture where parallelism of
image operations is used instead of pixel parallelism.
(Danielsson and Levialdi give a good review of image
processor architectures.5)

A cytocomputer consists of a serial pipeline of com-
monly clocked neighborhood processing stages (Figure
4).7 Shift registers within each stage store two contiguous
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Figure 2. Array similar to cellular automata of identical cells con-
nected to their nearest neighbor for iterative neighborhood process-
ing of digital images.
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Figure 3. Cellular array block diagram. Inputs from
neighborhood cells form the address to a RAM lookup
tabulation of the neighborhood transition function.
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Figure 4. Cytocomputer block diagram.” Serpentine shift register delays in each stage serially configure
neighborhood inputs to the neighborhood logic module. A pipeline of K stages executes a K step neighborhood pro-

cessing algorithm in real time. (Copyright IEEE, 1981.)

n pixel scan lines, and window registers hold the nine
neighborhood pixels that constitute the 3 x 3 input to the
neighborhood transition logic module. All neighbor-
hood transformations and data transfers are computed
within a single clock period. In each discrete clock
period, a new pixel is clocked into the stage, and simul-
taneously the contents of all shift register delays are
shifted by one element. In addition, operations that do
not involve the states of the pixel’s neighbors, such as
gray-value scaling and bit setting, are performed in a
separate point transition logic module to simplify the
neighborhood transition logic circuit. Because stage in-
put and output occur at the same rate, stages can be
cascaded, with all stages operating in parallel. We can
visualize a series of 3 X 3 windows following each other
across the image, each processing the previous stage’s
output as shown in Figure 5.

Transformations implemented in a cytocomputer
stage fall into two main categories. In the first, called the
silhouette, or 2-D, transformation, image algebra opera-
tions are applied to planar binary images. In the second,
called the umbra, or 3-D, transformation the same set of
operations are performed on gray-scale images, where
the gray value represents the brightness of a picture point
or its height above an arbitrary reference plane. In umbra
transformations the structuring elements are umbras of
subimages in a 3 x 3 x 3 window.
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Figure 5. Cytocomputer stage windows sequentially scanning across
adigital image. That portion of the image processed by the ith stage is

immediately available for processing by the (i + 1)th stage.
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Image processing language:
the processing link

The common thread in all biological image processing
with cytocomputers is the belief that forms encountered
and recorded in biology and medicine can be described in
standard terms, or structuring elements. The structuring
element probes the image, and in the process, transforms
it. The transformed value of a pixel indicates the fit of
the probe as applied to the image at that point.

Mathematical morphology is that part of image pro-
cessing concerned with image analysis by structuring
elements. The Center for Geostatistics and Mathematical
Morphology of the Ecole des Mines in Fontainebleau,
France, has been a traditional source of European image
analysis expertise for more than 15 years. Mathematical
morphology grew out of the early work of H. Minkow-
ski,® who used dilation to obtain appropriate measures
on the parameters of certain ill-behaved sets. Later, the
equivalence of sets and binary images led to the direct ap-
plication of integral geometry to problems of estimating
underlying physical parameters from samples in the im-
age form.

Mathematical morphology entered the modern era
through the work of G. Matheron® and J. Serral of the
Ecole des Mines. Motivated by problems in mining esti-
mation, Matheron and Serra not only formulated the
modern concepts of morphological image transforma-
tions but also designed and built a sophisticated image
analyzer, the Texture Analyzer System,!! for studying
mineralogical samples.

The processing of an image by mathematical mor-
phology is illustrated in Figure 6a, which is a binary
silhouette visualized as a topographic slice at constant
gray level within a gel section containing two closely ad-
jacent spots. The sequence of neighborhood transforma-
tions involved is divided into a subsequence of erosions
followed by a subsequence of dilations. Hence,
mathematical morphology is useful in isolating and fil-
tering individual spots.

A two-step erosion sequence is shown in Figures 6b
and 6¢. The neighborhood transformation rule applied
in going from 6a to 6b is simply to set any pixel to 0if any
cell in its nine-cell window is 0—the ‘“‘ANDing’’ of all the
cells in the window. The transition rule used in the
transformation from Figure 6b to 6c¢ is similar except that
only the four edge-connected pixels and their center are
tested. These two transformation conditions are illus-
trated in Figure 6d as structuring elements Bl and B2,
respectively. We can say that the binary image of Figure
6a, which we denote A, has been successively eroded by
structuring elements Bl and B2 to produce result C
(Figure 6¢c). This event can be expressed algebraicly as
C=(AO®B1)©B2, where © stands for the operation of
erosion. The erosion of 4 by Bk can be defined as deter-
mining pixels p of A to which the origin of structuring
element Bk can be translated, denoted Bk, such that it is
entirely contained within A; AQBk=(p: Bk,CAJ.

Two successive dilation steps involving the same struc-
turing elements B1 and B2 yield the image in Figure 6f.
The dilation rule states that any pixel having a 1 in a win-
dow position indicated by the structuring element is
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transformed to 1—the ‘“ORing’’ of the designated cells
in the window. The results of successive dilations by
structuring elements B2 and Bl are illustrated in Figures
6e and 6f, respectively. The dilation sequence of opera-
tions can be symbolized as D= (C® B2)® Bl, where ®
stands for the operation of dilation. The resulting pro-
cessed image (Figure 6g) consists of two spots, which are
clearly definable because extraneous pixels have been
removed.

The dilation of C by Bk can be defined as the union of
translations of the structuring element Bk to the points of
C, or

C®Bk= | J Bk,
peC

Since dilation is commutative (C@® Bk =Bk@C), the
order of the structuring element dilations is immaterial.

In mathematical morphology, the process of eroding
and dilating by the same sequence of elemental structur-
ing elements is called an opening. The result of an open-
ing by a sequence Bl, . . . ,Bk of structuring elements,
as illustrated in the preceding example for k=2, can be
expressed in an equivalent way in which the series of
structuring elements can be combined into a single form
B. Starting with Bl we successively dilate the structuring
elements B2, . .. ,Bk to create a new structuring ele-
ment B, or B=((BI®B2)®B3|® . ...

The result of the opening process can be conveniently
visualized in terms of the structuring element B alone. In
this example, dilation of the structuring elements B1 and
B2 gives the structuring element B shown in Figure 7a.

The opening of the active image is a new binary image
consisting of only those pixels that were 1 in image 4 and
that can be covered by at least one placement of B entire-
ly inside A. That is, the program searches (in parallel) for
all positions in A where we can place B and have all of the
1 pixels of Bcover a 1 pixel of A. Figure 7b shows a possi-
ble position. Any pixel of A that can be covered by any

000
000 000000
000
0
00000 :
00 00
11000000
00 00
11111111j00
00 00
111/00000
00 00
1
00 00
0
00000
0
000

(a) Structuring
element B

(b) One position of the included
structuring element.

Figure 7. The opening of the binary spot image visualized as pixels
that can be covered by the structuring element B as it slides around in-
side the spots. This result is implemented as a series of neighborhood
transformations. ' TR
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such included position of B belongs to the opening of 4
by B. Any 1 pixel of A that cannot be so overlapped
‘becomes 0 after opening. The opening of A by B is the
union of all translations of B that can be included in A,
orAg=(AOB)®B.

Thus, the transformation of opening an image allows
us to determine where the given structuring element B

can fit as it ‘‘slides around’’ within A, the image being
opened. I will now generalize opening to three dimen-
sions and show how opening with an approximately
spherical structuring element is useful in the process of
correcting for variations in the background level in 2-D
gels, the technique used in the human mutation rate
study discussed earlier.

Figure 8. Section of a lymphocyte gel autoradiogram (a) and its shaded and shadowed representation (b) illustrating

the 3-D umbra interpretation of the same data.

Figure 9. Process of background-normalization. Original gel section (a) is opened by the spherical structuiing element
(b) producing the gel background image (c), which is subtracted from the original, producing the result in (d).
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Cytocomputer applications

Gray-scale morphological processing. Two closely
spaced spots can often appear in the child’s gel when
each parent’s gel displays only one. Here, the integrated
density of each spot in the pair is half that of the parents.
Thus, we place a genetic constraint on the processing of
the gels by using a lower threshold on genetically
screened proteins so that protein concentrations reduced
by half are clearly discernible above background noise.
The problem in implementing this step directly on the gel
images is that the background intensity level, on which
the spots appear, is not uniform over a gel and varies be-
tween gels. Thus, we must remove the background from
the gel image before taking the threshold.

Programs have been developed that efficiently esti-
mate the background level across a gel image. Subtract-
ing the estimated background image from the original gel
image gives the background-normalized gel image. The
process of background estimation is an extension of the
binary image opening process previously described. The
only difference is that the digital spot images in the first
example are arrangements of pixels whose values are
‘either 1 or 0, and a gray-scale digital image has pixel in-
tensity values of anywhere between 0 and 255. In defin-
ing gray-scale neighborhood transformations, we need to
view the image as a set of ‘‘boxels,’’ or cubical pixelsin a
3-D volume. This representation, called the umbra of a
gray-scale image, consists of rows and columns of ver-
tical piles of boxels; the height of the pile (number of
boxels) at position x,y in the umbra is equal to the gray
level of the pixel at position x,y in the gray-scale image.

The umbra representation of a 2-D electrophoretic gel
can be visualized as an extraterrestrial landscape of tall
peaks and narrow ridges. The composited images in
Figure 8 illustrate the umbra representation through ap-
propriate shading and shadowing processing that makes
the height interpretation of gel gray levels more visually
apparent. Shading and shadowing, which are also imple-
mented morphologically by neighborhood transforms,
are detailed elsewhere.!2

The gray-scale opening is a gray-scale erosion followed
by a gray-scale dilation, expressed in terms of a gray-
scale structuring element. This opening process is il-
lustrated in Figure 9 for the previously shown gel section.
The gray-scale gel image in Figure 9a is opened by the
structuring element shown in Figure 9b to produce the
image in Figure 9c, referred to as the background image.
Figure 9d is the background-normalized image that
results from subtracting the background image from the
original.

The process of opening a gray-scale image by a gray-
scale structuring element to produce the background
image is understood in terms of the gray-scale image
umbra. The opening of an umbra of a gray-scale gel im-
age by a gray-scale structuring element is the union of all
translations of the 3-D structuring element that can be
entirely contained within the gel image umbra. We can
visualize a solid sphere that moves freely within the solid
volume of the gel image umbra but is constrained by the
upper surface of the umbra, as shown in Figure 10. The
umbra of the gel opening consists of only those boxels
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that can be covered by at least one position of the trans-
lating sphere. The sphere diameter is selected so that it is
considerably wider than any of the peaks formed by the
gel spots and thus cannot enter the interior of the peaks.
However, the diameter of the spherical structuring ele-
ment is small enough to follow the smooth contours of
the changing background intensity. The background is
smooth with respect to the sphere, but the peaks are not.

A large digital sphere appropriately shaded is shown in
Figure 11. The sphere is produced as the dilation of the
umbras of 26 3-D structuring elements, each structuring
element being a subset of a 3 X 3 x 3 window. The sphere
erodes or dilates a gray-scale image by a sequence of
eroding or dilating neighborhood transformations, each
neighborhood transformation being determined by the
3-D structuring elements composing the sphere.

Figure 10. Schematic representation of the rolling ball algorithm used
for background normalization. The ball follows the smooth back-
ground contours but does not penetrate the spot peaks. Rolling a ball
is equivalent to eroding and dilating by a spherical structuring ele-

ment.

Figure 11. Digital ball. This shaded structuring element is
obtained by dilating a single point by a sequence of 26
gray-scale neighborhood operations.
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To implement the opening in a parallel processor by
sequential gray-scale neighborhood operations, let
B1,B2, . .. ,Bk be a sequence of gray-scale neighbor-
hood elements and let the gray level of the pixel at coor-
dinate location (/, j) in the kth neighborhood element be
Bk (i, j), where i and j= —1,0, or 1 and i varies over a
3 x 3 window. Denoting the gray levels of the active gray-

Figure 12. Streak removal. The streaks in the background-
normalized gel section (a) are extracted by the opening
operation (b) using rolling-pin-like structuring elements.
The streakless result (c) is now ready for spot detection
and trio matching.

scale image as A(x,y), the gray levels of the result
C =A@ Bk are given by

C(xy) = ’I“‘;‘ [A(x—i, y=j) = Bk (=i, - j)].

As in the binary case, the opening of A4 by B is ac-
complished by first eroding A successively by the
neighborhood elements composing B and then dilating
the result by the same sequence. Again, the order of the
neighborhood elements does not influence the final
result. Dilation of a gray-scale image C by a gray-scale
neighborhood element Bk is described by the relation

D(x,y) = '?a?‘ [C(x—i, y=j) + Bk (i,j)].

i)

where D= (A©B) ®B=Ayg

Streak removal. The background-normalized gel im-
age exhibits a variety of horizontal and vertical streak
patterns (Figure 12a). For genetic comparison, these
streaks must be treated as noise, since low-intensity spots
falling on a streak increase in intensity and may be
detected as spots meeting the previously described con-
centration constraint. Thus, programs have been devel-
oped that remove the streaks while retaining the true in-
tensities of the spots that lie on them. These programs re-
ly on the same principle used in the background-
normalization process; that is, 3-D structuring elements
are used to open the image surface to define a new sur-
face consisting only of the streaks. This new surface can
then be subtracted from the original, effectively remov-
ing all the streaks.

Streak normalization is implementation by a pair of
gray-scale openings of the background-normalized im-
age. The structuring element of the first opening is a
horizontal bar one pixel high whose length slightly ex-
ceeds that of the widest spot. The second opening is by a
vertical bar one pixel wide whose length is similarly
greater than the vertical extent of the largest spots. The
two openings can be visualized as vertically and horizon-
tally positioned rolling pins that slide under the image
surface to define the vertical and horizontal streaks,
respectively. The union of the horizontally and vertically
opened images is then formed, as shown in Figure 12b.
Subtracting the gel streak image from the background-
normalized gel then gives the background-streak-nor-
malized result shown in Figure 12c.

Detecting spot peaks. Thresholding removes spots
with intensities that are too low to be clearly distinguish-
able from background noise. Sufficiently intense spots
are then located by a local maxima program. (A local
maxima program is adequate for spot detection in silver-

stained gels but not in gel autoradiographs, which are

much noisier.)

The parallel morphological local maxima program
first labels pixels for which the gray level equals or ex-
ceeds that of all their neighbors. These labeled pixels are
either local maxima or regions of local flatness located oh
a downslope of a spot or in a valley between spots.
(Figure 8 is useful for visualizing these regions.) Next, a
second label marks unlabeled pixels that adjoin the local
maxima and regions of local flatness whose gray levels
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are clearly less than those of their neighboring pixels.
Finally, the second label iteratively propagates itself over
any pixel, unlabeled or labeled, that is not uphill from the
label. This last step changes all pixels marked by the first
label that are not local maxima to the second label, leav-
ing only the pixels marked by the first label as the true
local maxima.

Spot domains. Occasionally, a pair of spots overlap in
the gel image such that one of the spots does not possess a
distinct local maximum. The elongated regions at the
center of the pseudocolored, background-normalized gel
images of Figure 13 are examples of such spots. The
pseudocolored, multithresholded images of Figure 14
further illustrate spots (marked by arrows) that do not
have local maxima yet must be ultimately matched to
spots with local maxima. To resolve this potential dif-
ficulty, programs have been developed to locate spot
domains on the basis of their shapes. These programs
segment overlapping spots at regions of elongation or
narrowing using a morphological iterative technique
known as the watershed algorithm (Lantuejoul!?). The
result of watershed segmentation is shown in Figure 15.

Gel matching. The final step in the automated process-
ing of the father, mother, and child, or FMC, trio is gel
matching. Recall that a candidate mutant protein will be
represented by a spot appearing in a child’s gel that does
not have a corresponding spot in the same location in
either of the parent’s gels. Candidate mutant proteins
will be variants of normal proteins, in which a random
insertion or deletion of an amino acid or amino acid
chain yields a protein with a modified molecular weight,
or more likely, a modified molecular charge. We expect
to see mutant proteins as spots shifted from their normal
positions by several millimeters, depending on where
they occur in the gel.

Gels cannot be compared by direct superposition.
Furthermore, global stretching cannot be applied to the
gel images to align all similar protein spots because the
gels exhibit strong local nonlinearities that are due to
inhomogeneities in their manufacture. Humans can com-
pare gels by locating a given spot within a local constella-
tion of spots and searching accompanying gels first for
the constellation and then for the given spot within the
constellation. A computer compares gels by a similar
procedure implemented as a graph matching program.

Figure 13. Pseudocolor composite of background-normalized gel autoradiograms. Autoradiograms are noisier than
silver-stained gels and require greater care in processing.
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Figure 14. Pseudocolored, multithresholded composite from Figure 13. Arrows mark comparable spots in both gels,
but not all spots are distinct. Shape recognition processing separates spots into distinct regions (Figure 15).

Figure 15. Extracted spot domains of the gel autoradiograph composite of Figure 13.
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(a)

(c)

Figure 16. Matched father (a), mother (b), and child (c) trio
after seven jterations of the Skolnick graph matching
algorithm. Matching spots are given the same spot
number. Virtual spots are created where no matching
spot is found. Spots belonging only to one family
member are marked with dots.
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The graph matching program, which was developed by
Skolnick, !4 does not depend on any a priori knowledge
of the spot spatial distribution. The program constructs a
graph, the Gabriel graph, described by Toussaint, !’ by
using as nodes any spot cues that exceed a given intensity
threshold. The graphs are then compared to determine
an initial subset of spots common to all three. From this
subset of common spots the program then determines
whether the remaining graph differences are real or the
result of quantitative variations caused by spots falling
below the threshold. Through continued iteration the
program resolves unmatched spots by spatially relating
them via their connecting graph edges to previously
matched spots until all graph differences from spot in-
tensity variations are removed. The graph matching pro-
gram does not run on the cytocomputer but on its host
computer, a VAX 11/780. Figure 16 illustrates the
Gabriel graphs of an FMC trio after seven iterations of
Skolnick’s algorithm. All graph differences have been
resolved, and family protein matches can be listed.

Biomedical application has been the vehicle through
which I have examined algebraic languages and com-
puter architectures for image processing. I stress that the
language and architecture presented here are not abstract
constructs, but well-conceived solutions to practical prob-
lems that arise during biomedical applications of new
computer technologies. Language, architecture, and ap-
plication should not be segmented for individual study,
however, for it is the parallel learning process that ulti-
mately brings about a full understanding of computers
and computer languages—and parallelism is after all
what image processing is all about. B
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