package ij.process;
import ij.measure.Calibration;

/** 8-bit image statistics, including histogram. */
public class ByteStatistics extends ImageStatistics {

    /** Construct an ImageStatistics object from a ByteProcessor
        using the standard measurement options (area, mean,
        mode, min and max) and no calibration. */
    public ByteStatistics(ImageProcessor ip) {
        this(ip, AREA+MEAN+MODE+MIN_MAX, null);
    }

    /** Constructs a ByteStatistics object from a ByteProcessor using
        the specified measurement and calibration. */
    public ByteStatistics(ImageProcessor ip, int mOptions, Calibration cal) {
        ByteProcessor bp = (ByteProcessor)ip;
        histogram = bp.getHistogram();
        setup(ip, cal);
        double minT = ip.getMinThreshold();
        int minThreshold,maxThreshold;
        boolean limitToThreshold = (mOptions&LIMIT)!=0;
        if (!limitToThreshold || minT==ImageProcessor.NO_THRESHOLD) {
            minThreshold=0;
            maxThreshold=255;
        } else {
            minThreshold = (int)minT;
            maxThreshold = (int)ip.getMaxThreshold();
        }
        if (limitToThreshold)
            saveThreshold(minThreshold, maxThreshold, cal);
        float[] cTable = cal!=null?cal.getCTable():null;
        if (cTable!=null)
            getCalibratedStatistics(minThreshold,maxThreshold,cTable);
        else
            getRawStatistics(minThreshold,maxThreshold);
        if ((mOptions&MIN_MAX)!=0) {
            if (pixelCount==0)
                min = max = Double.NaN;
            else if (cTable!=null)
                getCalibratedMinAndMax(minThreshold, maxThreshold, cTable);
            else
                getRawMinAndMax(minThreshold, maxThreshold);
        }
        if ((mOptions&ELLIPSE)!=0 || (mOptions&SHAPE_DESCRIPTORS)!=0)
            fitEllipse(ip, mOptions);
        else if ((mOptions&CENTROID)!=0)
            getCentroid(ip, minThreshold, maxThreshold);
        if ((mOptions&(CENTER_OF_MASS|SKEWNESS|KURTOSIS))!=0)
            calculateMoments(ip, minThreshold, maxThreshold, cTable);
        if ((mOptions&MEDIAN)!=0)
            calculateMedian(histogram, minThreshold, maxThreshold, cal);
        if ((mOptions&AREA_FRACTION)!=0)
            calculateAreaFraction(ip, histogram);
    }

    void getCalibratedStatistics(int minThreshold, int maxThreshold, float[] cTable) {
        int count;
        double value;
        double sum = 0;
        double sum2 = 0.0;
        double isum = 0.0;
        
        for (int i=minThreshold; i<=maxThreshold; i++) {
            count = histogram[i];
            value = cTable[i];
            if (count>0 && !Double.isNaN(value)) {
                pixelCount += count;
                sum += value*count;
                isum += i*count;
                sum2 += (value*value)*count;
                if (count>maxCount) {
                    maxCount = count;
                    mode = i;
                }
            }
        }
        area = pixelCount*pw*ph;
        mean = sum/pixelCount;
        umean = isum/pixelCount;
        dmode = cTable[mode];
        calculateStdDev(pixelCount,sum,sum2);
        histMin = 0.0;
        histMax = 255.0;
    }
    
    void getCentroid(ImageProcessor ip, int minThreshold, int maxThreshold) {
        byte[] pixels = (byte[])ip.getPixels();
        byte[] mask = ip.getMaskArray();
        boolean limit = minThreshold>0 || maxThreshold<255;
        double xsum=0, ysum=0;
        int count=0,i,mi,v;
        for (int y=ry,my=0; y<(ry+rh); y++,my++) {
            i = y*width + rx;
            mi = my*rw;
            for (int x=rx; x<(rx+rw); x++) {
                if (mask==null||mask[mi++]!=0) {
                    if (limit) {
                        v = pixels[i]&255;
                        if (v>=minThreshold&&v<=maxThreshold) {
                            count++;
                            xsum+=x;
                            ysum+=y;
                        }
                    } else {
                        count++;
                        xsum+=x;
                        ysum+=y;
                    }
                }
                i++;
            }
        }
        xCentroid = xsum/count+0.5;
        yCentroid = ysum/count+0.5;
        if (cal!=null) {
            xCentroid = cal.getX(xCentroid);
            yCentroid = cal.getY(yCentroid, height);
        }
    }

    void calculateMoments(ImageProcessor ip,  int minThreshold, int maxThreshold, float[] cTable) {
        byte[] pixels = (byte[])ip.getPixels();
        byte[] mask = ip.getMaskArray();
        int v, i, mi;
        double dv, dv2, sum1=0.0, sum2=0.0, sum3=0.0, sum4=0.0, xsum=0.0, ysum=0.0;
        for (int y=ry,my=0; y<(ry+rh); y++,my++) {
            i = y*width + rx;
            mi = my*rw;
            for (int x=rx; x<(rx+rw); x++) {
                if (mask==null || mask[mi++]!=0) {
                    v = pixels[i]&255;
                    if (v>=minThreshold&&v<=maxThreshold) {
                        dv = ((cTable!=null)?cTable[v]:v)+Double.MIN_VALUE;
                        dv2 = dv*dv;
                        sum1 += dv;
                        sum2 += dv2;
                        sum3 += dv*dv2;
                        sum4 += dv2*dv2;
                        xsum += x*dv;
                        ysum += y*dv;
                    }
                }
                i++;
            }
        }
        double mean2 = mean*mean;
        double variance = sum2/pixelCount - mean2;
        double sDeviation = Math.sqrt(variance);
        skewness = ((sum3 - 3.0*mean*sum2)/pixelCount + 2.0*mean*mean2)/(variance*sDeviation);
        kurtosis = (((sum4 - 4.0*mean*sum3 + 6.0*mean2*sum2)/pixelCount - 3.0*mean2*mean2)/(variance*variance)-3.0);
        xCenterOfMass = xsum/sum1+0.5;
        yCenterOfMass = ysum/sum1+0.5;
        if (cal!=null) {
            xCenterOfMass = cal.getX(xCenterOfMass);
            yCenterOfMass = cal.getY(yCenterOfMass, height);
        }
    }
    
    void getCalibratedMinAndMax(int minThreshold, int maxThreshold, float[] cTable) {
        if (pixelCount==0)
            {min=0.0; max=0.0; return;}
        min = Double.MAX_VALUE;
        max = -Double.MAX_VALUE;
        double v = 0.0;
        for (int i=minThreshold; i<=maxThreshold; i++) {
            if (histogram[i]>0) {
                v = cTable[i];
                if (v<min) min = v;
                if (v>max) max = v;
            }
        }
    }
    
}